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We present a simple model for deep bed filtration, where particles suspended in a fluid are trapped while
passing through a porous filter. A steady state of the model is reached when the filter cannot trap additional
particles. We find the model has two qualitatively different steady states depending on the fraction of traps, and
the steady states can be described by directed percolation. We study, in detail, the evolution of the distribution
of trapped particles, as the number of trapped particles increases. To understand the evolution, we formulate a
mean field equation for the model, whose numerical solution is consistent with the behavior of the model. We
find the trapped particle distribution is insensitive to details of the formulation of the model.
@S1063-651X~96!10310-X#

PACS number~s!: 47.55.Mh, 05.401j, 05.601w, 64.60.Ak

I. INTRODUCTION

Deep bed filtration is a well-established process used to
separate solid particles suspended in a fluid@1–4#. A dilute
suspension is injected into a filter made of porous material.
Particles, while flowing through the filter, are trapped inside
by various mechanisms. The trapped particles can later be
recovered by ‘‘cleaning’’ the filter.

The quantities of main interest are the filter efficiency~the
fraction of injected particles trapped in the filter! and the
pressure drop across the filter in order to maintain a constant
fluid flow. As more particles are trapped in the filter, the
filter efficiency usually decreases, and the pressure drop usu-
ally increases. The theory of deep bed filtration should pre-
dict these quantities in terms of parameters of the system. In
order to build such a theory, one needs certain knowledge
about the dynamics inside a filter, e.g., the spatial distribu-
tion of trapped particles. Unfortunately, such information has
been very limited@5,6#.

Recently, Ghidagliaet al. carried out a series of experi-
ments on deep bed filtration@7–9#. Instead of a conventional
porous material~e.g., sandstone!, they used a random pack-
ing of glass spheres as the filter medium. The transparency of
glass and the index matched fluid used for the suspension
allow direct visual observation inside the whole filter. The
movements of particles can be followed in great detail. The
setup can be used to gain valuable information inside the
filter, such as the interaction of particles with a porous me-
dium, and the distribution of trapped particles. It also be-
comes a challenge to understand these newly available quan-
tities.

Network models can be used to study the behavior of
particles and a fluid in a filter@10–13#. In a network model,
the inner structure of the filter is modeled by pores intercon-
nected by narrow channels. A microscopic pressure-flow re-
lation, e.g., Darcy’s law, is assumed across each channel.
Such relations and the external boundary conditions provide
equations for the flow field, which can be solved numeri-
cally. The motion of a particle is determined by both the
local flow field and the interaction between particles. The
main advantage of a network model is that it is a good ap-
proximation to a real system. For example, the flow field and

the movement of a particle can be calculated from micro-
scopic equations with a reasonable geometry. The disadvan-
tage, however, is large computational efforts necessary even
for the simulations of a moderate size system.

Instead, we propose a cellular automata model for deep
bed filtration. The main advantage of the model is, due to its
simplicity, that one can study the detailed behavior of sys-
tems of a fairly large size. Only geometric properties can be
obtained from the model. Also, the rules for the movement
of particles are too simple to capture the detailed interactions
of real particles. For example, the actual flow field in a filter
constantly changes with the movement of particles. Such
changes are mostly ignored in the present model. We thus
expect that only those aspects of the behavior of the model
which are not sensitive to the details of the rules can be
compared with experiments. Such comparisons are necessary
to establish the validity and the limitations of the model.

As the number of trapped particles increases, the model
reaches a steady state in which no additional particle can be
trapped. The steady state can, as we shall see, be described
by directed percolation~DP!. The qualitative behavior of the
steady state is different depending on a parameterp, the
fraction of trapping bonds. Ifp is less than thresholdpc , a
newly injected particle simply pass through the filter without
being trapped. On the other hand, ifp.pc , all the paths
leading to an exit are blocked. We study in detail the evolu-
tion of the distribution of trapped particles for various values
of p. To understand the behavior of the model, we construct
a mean field differential equation for the evolution of the
distribution. The numerical solutions of the equation are in
good agreement with the simulations of the model. We also
find that the behavior of the model is not sensitive to various
changes of the rules for the dynamics.

The paper is organized as follows. In Sec. II, we define
the model, and study the model without blocking. We form a
differential equation, and its solution is compared with the
simulations of the model. In Sec. III, we study the steady
state of the full model with blocking, and compare it with
DP. We also study the evolution of the distribution of
trapped particles. In Sec. IV, a few modification of the rules
are introduced to check the stability of the behavior of the
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model. A brief summary of the results and limitations of the
model are given in Sec. V.

II. MODEL WITHOUT BLOCKING

A. Definition of the model

Consider a square lattice, rotated by 45° to the flow axis,
of width W and lengthL, which is an idealized network
model of the filter pore space~Fig. 1!. The nodes and bonds
of the lattice represent pores and channels, respectively. A
periodic boundary condition is applied in the transverse di-
rection. Fluid containing suspended particles is injected on
the left side of the filter (x51 line!, and exits the right side
(x5L line!. Suspended particles, if not trapped, move along
the local direction of the fluid flow. We consider particles of
a radiusR, and assign a channel radiusr j to bond j , where
the radius is drawn from some distributionC(r ). A bond
with r j.R is called a B ~big! bond, and other bonds
(r j<R) areS ~small! bonds. Particles can move through a
B bond without difficulty, while they would be trapped in an
S bond. Let the fraction ofS bonds bep.

The rules for the movement of a particle are defined as
follows. A particle is inserted at a randomly chosen node at
the left end. We require that the particle always tries to move
to the right, the direction of the fluid flow. At a node, the
particle has to choose a bond out of the two bonds on its
right for a movement. We first consider the case that no
particle is trapped in the bonds. Here, the particle randomly
chooses a bond with equal probability. If the chosen bond is
a B bond, the particle moves through the bond to the next
node. If it is aS bond, the particle is trapped in the bond. The
movement of the particle is repeated until either the particle
is trapped or comes out of the filter. We then insert another
particle to the filter, and the whole process is repeated.

We still have to define the rules involving bonds which
contain a trapped particle. A reasonable rule is that if a par-
ticle is trapped inside a bond, the entrance to the bond is
blocked by the particle. Note that onlyS bonds can trap a
particle. There are two possibilities involving blocked bonds.
If only one of the two bonds for the movement is blocked,

we always move the particle to the bond which is not
blocked. If both bonds are blocked, the situation becomes a
little complicated. The particle can not continue to move,
when it reaches such a dead end. We solve the problem by
blocking all the paths leadingonly to dead ends. The details
of the procedure will be discussed in Sec. III.

The system with the rules defined so far is the main
model, which will be studied extensively for the most of the
paper. In this section, however, we want to start with a sim-
pler case of no blocking. In this case, a particle can move
through anS bond with a trapped particle, and it will not be
trapped. In a sense, anS bond with a trapped particle is
treated like aB bond. Thus the effect of blocking by a
trapped particle is ignored. The model without blocking is
not realistic, and its behavior is very different from that with
blocking. However, ignoring the effect of blocking makes
the analysis of the model tractable, and the method devel-
oped here will later be extended to the full model with
blocking.

B. Simulation of the model

We present results of numerical simulations of the model
without blocking. The primary quantity of interest is the den-
sity field r(x,t) of trapped particles. Here,r(x,t)dx is de-
fined as the number of trapped particles in@x,x1dx# divided
by 2W. Also, t is the total number of injected particles,
which can be used as a timelike variable. In Fig. 2~a!, we
showr(x,t) for several values oft andp. For smallt, the
density field forms a characteristic shape—two flat regions
joined by a transition region. For larget, the field seems to
translate without much change of shape. If the shape of the
field remains constant, one can show that the curve should
move with constant velocityv(p)51/2Wp. The velocity is
defined as the amount of translation per injected particle. We
translate the fields of Fig. 2~a! according to the velocity as
shown in Fig. 2~b!. The fields for differentt all seem to
collapse in a narrow region. A closer inspection shows, how-
ever, the shape changes slowly, but systematically, witht.
The width of the transition region slowly increases witht.

A further point is that the shapes ofr(x,t) for different
values ofp seem to look the same. One can roughly scale
these curves to a single curve as shown in Fig. 2~c!. The
curves agree very well with each other for smallt. Then, the
width of the transition region grows faster for larger values
of p, and systematic deviations from the collapse are visible
ast increases. In scaling the curve, we scale the width of the
transition region by 1/p. The argument for the choice fol-
lows. For a givenp, the penetration depth of a particle is of
order 1/p. The width of the transition region, which is the
fluctuation of the penetration depth, is expected to be similar
to the penetration depth. In the next section, we show that the
simulational results discussed here can be understood in
terms of a mean field differential equation for the evolution
of r(x,t).

C. Evolution equation of the density field

We derive an approximate equation for the evolution of
the density fieldr(x,t). Consider the motion of a particle
injected into the filter. Whenever the particle moves, there is
a certain probability that the particle is trapped. The average

FIG. 1. A schematic view of the model filter: nodes and bonds
in the square lattice represent pores and channels in filter, respec-
tively. S bonds are shown with thin lines, whereas thick lines are
used forB bonds. A moving particle is shown with an empty circle,
and a trapped particle with a filled circle. The arrows next to bonds
show possible movement of a particle. For example, the particle
cannot move to theS bond with a trapped particle.
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fraction of unoccupiedS bonds, which act as traps, at posi-
tion x is p2r(x,t). We assume that the probability that the
particle is trapped, while moving fromx to x1dx, is
@p2r(x,t)#dx. Here, an approximation is made which ig-
nores the variation of the density field in the transverse (y)

direction. LetP(x,t) be the probability that the particle ar-
rives at positionx without being trapped. Under the above
assumption, the probability of the particle to be trapped in
@x,x1dx# is @p2r(x,t)#P(x,t)dx. We thus arrive at

]

]x
P~x,t !52@p2r~x,t !#P~x,t !, ~1!

whose solution with conditionP(0,t)51 is

P~x,t !5expF2E
0

x

p2r~x8,t !dx8G . ~2!

Since the density field increases by 1/2W for every new par-
ticle trapped, the evolution equation for the density is

]

]t
r~x,t !5

1

2W
@p2r~x,t !#P~x,t !

5
1

2W
@p2r~x,t !#expF2E

0

x

p2r~x8,t !dx8G .
~3!

The derivation of~3! involves another approximation. The
change of the density field per injected particle is assumed to
be proportional to the trapping probability which isaveraged
over all possible trapping sites~mean field approximation!.
On the other hand, the relevant density field, and the one we
have considered, is obtained by injecting certain number par-
ticles ~e.g., 10 000) without taking an average after each in-
jection. The average is taken onlyafter the whole injectionof
particles. The two procedures are, in general, not equal. The
validity of the approximations in deriving~3! will be
checked with simulations of the model.

The evolution equation~3! contains an integral in the ex-
ponent, which makes further analysis less convenient. The
integral can be eliminated by simple manipulations. Motived
by the wavelike behavior of the density field found in the
simulations, we search for a traveling wave solution—
r(x,t)5 f @x2v(p)t#. Inserting it into~3!,

]

]t
f ~x2vt !52v

]

]x
f ~x2vt !

5
1

2W
@p2 f ~x2vt !#

3expF2E
0

x

p2 f ~x82vt !dx8G . ~4!

Differentiating the equation with respect tox, and after a
little rearrangement,

]2

]x2
f52

1

p2 f S ]

]x
f D 22~p2 f !

]

]x
f , ~5!

which is a nonlinear differential equation.
We cannot obtain the analytic solution of the equation,

and we numerically solve it using a Runge-Kutta routine
@14#. The solution is calculated in the interval@0,10#. We
choosef5p at x50. The boundary condition at the other

FIG. 2. ~a! The density fieldr(x,t) for p50.2 and 1.0 is shown
for several values oft. The difference oft between the successive
fields is 104p. ~b! The fields in~a!, translated byv(p)t, are shown.
~c! The scaled fields forp50.1, 0.5, and 1.0 are shown. The scaled
fields collapse very well for smallt, but deviations from the col-
lapse are apparent for larget. Here, we useW5500 andL5100,
and all the fields are averaged over 100 samples.
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end is a bit subtle. We choosef to be close to, but not equal
to, 0 atx510. Note thatf can not be 0 due to the nonzero
probability that a particle passes through the interval. We
have triedf51023,1024,1025 with no essential difference
in the result. The value off is chosen to reveal the whole
shape of the field in the interval. The value off at x510
changes the amount by which the curve is translated, not the
shape of the curve. In Fig. 3~a!, we show the numerical so-
lutions of the equation for several values ofp. The shape of
the field is very similar to that in Fig. 2. Furthermore, the
solutions satisfy the same scaling as the simulations. Here,
the scaling is almost perfect without any visible deviation.
We also show both the numerical solution and the density
fields obtained by the simulations in Fig. 3~b!. There is good
agreement, especially at earlyt of the simulation. However,
the width of the transition region of the field from the simu-
lations gradually increases, ast increases. Equation~3!
seems to provide a good overall description of the results of
the simulations, except the broadening of the interfaces.

What is the possible origin of the broadening? Think of
the filter bed as a set ofW columns perturbed by the trans-
verse coupling between them. The average number of par-

ticles injected in a column isn5t/W. The fluctuation ofn
should be order ofAn. Consider a column in the filter. Since
the average position of the transition region in the column is
x̄5n/2p, the fluctuation ofx̄ is dx5Ax̄/2p. Therefore, the
width of the transition region of thewholefilter is affected
not only by the widthvs of the transition region of a single
column, but also bydx. A rough estimate is that the resulting
width v becomesAvs

21(dx)2, which implies that the ratio
v/vs is A112px̄. Thus the effective width increases with
t ( x̄), and the rate of the increase is larger for largerp, which
are consistent with the results of the simulations~Fig. 2!.

III. FULL MODEL WITH BLOCKING

A. Steady state behavior

Having obtained reasonable understanding of the model
without blocking, we proceed to a more interesting case
where blocking is present. We first discuss the steady state of
the model. It will later become clear that the information of
the steady state plays a crucial role in describing the evolu-
tion of r(x,t). A steady state is reached when there are no
more emptyS bonds which can be reached by an injected
particle, thus the density fieldr(x,t) will remain constant.
Let the steady state density field bers(x). We consider the
steady state in the limit of the infinite system size. In the
steady state, ifp,pc , all injected particles pass through the
filter without being trapped. On the other hand, ifp.pc , all
the paths leading to an exit from the filter are blocked. Here,
pc is a threshold. We start to see the similarity of the present
model to directed bond percolation~DP! @15#. By comparing
the rules of the present model with those of DP on a square
lattice, one can notice that the positions of trapped particles
in the steady state are identical to those of the blocked bonds
connected to a cluster in a DP. We thus expect the steady
state density fieldrs(x) to be described by DP.

We briefly review predictions of DP. First, there is a per-
colation thresholdpc . The exact value ofpc is not known,
and the best estimate for bond percolation on a square lattice
is 0.355 299(1)@16#. Note thatp represents the blocking
probability, not the conducting probability commonly used
for percolation. We discuss the behavior in three separate
regimes.

p5pc: There exists a spanning cluster of unblocked
bonds. The mass of a spanning cluster can be calculated as
follows. The probability that a bond belongs to a spanning
cluster P`(p) scales asup2pcub. Since the correlation
length in the longitudinal directionj i scales asup2pcu2n i,

P`~p!;j i
2b/n i . ~6!

The total mass of a spanning cluster isP`(p) times the
width 2W and the lengthj i of the cluster 2Wj i

12b/n i . Then,
the mass of a spanning cluster in@x,x1dx# divided by
2W, which behaves the same asrs(x)dx, is

rs~x!dx;x2b/n idx. ~7!

Using the best estimates forn i and b @1.7334(10) and

FIG. 3. ~a! The solution of~5! for p51,5,10 is shown. The
scaling used for the fields is the one used for the simulational data
@Fig. 2~c!#. The fields exhibit excellent scaling behavior. Here, the
fields are translated byd so that the centers of the transition regions
coincide.~b! The solution forp51 is shown with the density fields
from the simulations. There are good agreements at earlyt.
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0.277(1), respectively#, b/n i is determined to be 0.1598
@16#. The steady state density field at the thresholdpc decays
as a power law.

p,pc : There also exists a spanning cluster. Following
the formalism in DP, we propose a scaling ansatz

rs~x!;up2pcubg~x/j i!, ~8!

whereg(z) is a scaling function to be determined. The scal-
ing is, as in DP, expected to be valid nearpc . The function
g(z) has to satisfy certain properties. Consider the limit of
p→pc

2 , which results inj i@x. Since the density field has to
approach~7!, g(z) should behave asz2b/n i for z!1. On the
other hand, the density field has to approachP` as z@1,
which impliesg(z);1. In sum,

g~z!;H z2b/n i if z ! 1,

1 if z @ 1.
~9!

p.pc : There is no spanning cluster. In the regime, we
propose a scaling ansatz

rs~x!;x2b/n ih~x/j i!, ~10!

whereh(z) is another scaling function. If we take the limit of
p→pc

1 the density field has to approach~7!, which requires
h(z);1 as z!1. No new information aboutg(z) can be
obtained in the other limit ofz@1.

We present results of the numerical simulations to com-
pare with the above predictions. In order to obtain a steady
state, one can inject particles one by one, until no particle
can be trapped, literally following the definition. The proce-
dure is quite time consuming, and there is a much faster way
to determine the steady state density field. The method is
based on the ‘‘burning’’ algorithm originally used to study
the properties of a percolation cluster@17#. The state state
density field is determined in a single ‘‘sweep’’ of the sys-
tem. The method will be discussed in Appendix A. In the
insets of Fig. 4~a! and 4~b!, we showrs(x) for several values
of p, determined by the method. The density field atpc de-
cays as a power law with an exponent consistent with~7!.
We then scale thesers(x) according to the predictions of
DP—~8! and ~10!. All the curves seem to collapse well into
two curves, one forp,pc @Fig. 4~a!# and the other for
p.pc @Fig. 4~b!#. Only small deviations can be seen for the
values ofp away frompc . Note that all the parameters used
for the scaling~e.g., pc ,b) are those of DP, and no free
parameters are used. The scaled curves, which are the scaling
functionsg(z) andh(z), also satisfy the properties discussed
before. The scaled curve of Fig. 4~a!, which isg(z), decays
as a power law for smallz, and approaches a constant for
largez. Also, the curveh(z) in Fig. 4~b! approaches a con-
stant for smallz, and seems to decays as an exponential.
Thus the comparison with the numerical simulations con-
firms that the steady state density field is well described by
DP.

B. Evolution of the density field

Now we will discuss the evolution of the density field for
the full model with blocking. The simulation of the model
poses a subtle problem. Consider a particle moving in the

filter. If both of the bonds available to the particle are
blocked, the particle can not continue to move. What should
be an appropriate rule for the movement? In a real situation,
a particle chooses a channel according to the amount of fluid
flow in the channel. Since the fluid flow in the channels
leadingonly to dead ends will be very small, particles rarely
go to these channels. In the present simulation, we remove
all the paths leadingonly to blocked bonds. To identify such
a path, one has to consider more than local geometry, since
all the paths connected to the bond have to be traced. We
have developed a method based on the burning algorithm
@17#. The method is similar to the one used to remove the
‘‘dangling’’ bonds of an infinite percolation cluster. The de-
tailed description of the method will be given in Appendix B.
In Fig. 5, we show the evolution of the density field for
several values ofp. For smallp, the overall shape of the field
is similar to the no blocking case~Fig. 2!. There are two
small differences, though. The steady state value of the den-
sity field forx@1 is smaller thanp, compared to the value of
p for the model without blocking. The difference is due to
the fact that some ofS bonds are not accessible to injected
particles. Also, the width of the transition region for the

FIG. 4. The scaled steady state density fieldsrs(x) of the model
with blocking is shown for ~a! p,pc : p50.3193, 0.3367,
0.3457, 0.3504, and for~b! p.pc : p50.3602, 0.3649, 0.3739,
0.3913. The fields before scaling are shown in the insets. Also, the
field for p5pc is shown in the inset of~b!. Here, W5100,
L5500, and the density fields are averaged over 100 samples.
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model with blocking is a bit larger. Asp increases, even the
overall shape of the field becomes different from that without
blocking. The width of the transition region becomes quite
large~comparable to the length of the system in some cases!.
The density field for very smallt is exponential, in agree-
ment with the previous simulations@8#.

We quantify the transition region by defining the average
position x̄ and the widthdx of the region. Forp,pc , the

inflection point of the fieldr(x,t) is a suitable criterion for
x̄. We numerically calculate the spatial derivative
r8(x,t)[2]xr(x,t) using the smoothed data ofr(x,t). The
results are not sensitive to the exact procedure for the
smoothing. The resulting fieldr8(x,t) is a bell shaped curve,
where the position of the maximum is the inflection point.
We definex̄ anddx as the mean̂x&d and the standard de-
viation A^x2&d2^x&d

2 of r8(x,t), respectively. ThuŝA&d is
defined as

^A&d5
*0
Lr8~x,t !A~x,t !dx

*0
Lr8~x,t !dx

. ~11!

The average positionx̄ and the widthdx for several values of
p, wherep,pc , are shown in Fig. 6~a!. Comparing the val-
ues with the density fields~Fig. 5! confirms that these values
are reasonable representations of the transition region.

Unfortunately, the above procedure cannot be applied for
p.pc . Here, the inflection point of the field, if it exists, is
not a reasonable representation of the mean position of the
transition region. The density field behaves like a decaying
exponential. We definex̄ and dx as the mean̂x&u and the
standard deviationA^x2&u2^x&u

2 of r(x,t), respectively.
Thus ^A&u is defined as

FIG. 5. Evolution of the density field with blocking is shown for
~a! p50.3193, ~b! p5pc , and ~c! p50.3913. Here,W5100,
L5500, and the fields are averaged over 100 samples. The differ-
ence oft between the successive fields is 3000 for~a! and~b!, and
1000 for ~c!.

FIG. 6. The mean position and the width of the transition region
from the simulation data as in Fig. 5: The width is shown~a! for
p,pc : p50.3193, 0.3367, 0.3457, 0.3504, and~b! for p.pc :
p50.3602, 0.3649, 0.3739, 0.3913. The mean positions are also
shown in the insets.
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^A&u5
*0
Lr~x,t !A~x,t !dx

*0
Lr~x,t !dx

. ~12!

In Fig. 6~b!, the values ofx̄ anddx obtained following the
procedure are shown. Again, the values seem to be reason-
able representations of the transition region.

How do we understand the evolution of the field? Is there
any equation similar to~3! which can be used for the situa-
tion? To answer the question, we inspect~3! again. In the
equation, the trapping probability of a particle passing
through a channel is assumed to bep2r(x,t), the fraction of
emptyS bonds. In other words, we assume thatall S bonds
will eventually trap one particle. One of the effects of block-
ing is, however, to make some of theS bonds inaccessible to
the injected particle. For the model with blocking, the frac-
tion of accessibleSbonds isrs(x) instead ofp. It thus seems
reasonable to replacep with rs(x) in ~3!, when blocking is
allowed. The proposed equation for the model with blocking
is

d

dt
r~x,t !5

1

2W
@rs~x!2r~x,t !#

3expF2E
0

x

rs~x8!2r~x8,t !dx8G . ~13!

We numerically solve the equation, where we use the steady
state density fieldrs(x) measured in the preceding section.
For quantitative comparisons, we calculate the mean and the
width of the transition region of the resulting field using the
methods discussed before. In Fig. 7, we show these quanti-
ties for several values ofp. By comparing them with the
ones obtained by the simulations~Fig. 6!, one can notice the
overall behavior is essentially identical. Also, even their nu-
merical values are in good agreements. We thus believe that
the modified equation~13! is a good starting point for the
description of the model with blocking.

IV. STABILITY OF THE MODEL

In this section, we study a few variations of the model.
Our objectives are twofold: we want the rules to be more
realistic, and we want to know how much the results~e.g.,
the density field! change under the variations. Only the quan-
tities which are not sensitive to the details of the model are
meaningful, and can be compared with experiments.

The first variation is to introduce the concept of flow in-
duced probability~FIP! @18,20,19#. Consider a particle mov-
ing through filter. As the particle reaches a pore, it has to
choose a channel to continue its movement. The exact rule
for the choice is complicated, and is not fully understood.
Still, it is a good approximation to assume the particle
chooses a channel proportional to the amount of flow going
through it, which is called flow induced probability. In the
present model, the particle chooses a channel with equal
probability, if it is not blocked. The problem in introducing
FIP to the model is that the flow field for the whole system
has to be calculated. The calculation, not only is time con-
suming, but also goes against our intention of constructing a
simple model.

A simple solution for the problem can be obtained by

noting the strong correlation between the flow and the mo-
bility of a channel. It also seems reasonable to assume that
they are proportional to each other. Thus we implement FIP
by assigning a mobility to channels, and assume the amount
of flow in a channel is proportional to its mobility. The mo-
bility of a channel is determined as follows. For a channel,
one chooses a radiusr drawn from distributionC(r ). If one
assumes for simplicity that the channel length is on the order
of the channel radius, the mobility of the channel is propor-
tional tor 3, where we assume Poiseuille flow in a cylindrical
tube. How about distributionC(r ) for the radius? We first
try a uniform distribution in the interval@1/2,1#. Thus the
probability that the radius is in@r ,r1dr# is 2dr, if
1/2,r,1, and is zero for other values ofr . The new rule
significantly changes local movements. The probability of
choosing a channel can now differ by a factor of 5 to 6. In
Fig. 8, we show the density field obtained by the numerical
simulations of the uniform distribution for several values of
p. There are small differences between the fields with and
without FIP, especially at small values oft. The resulting
difference is quite small, considering the significant changes
of particle movements.

We also study the field usingC(r ) of the three dimen-
sional random close packing~RCP! of uniform spheres.

FIG. 7. The mean position and the width of the transition region
of the density field obtained from~13!: the width is shown~a! for
p,pc : p50.3193, 0.3367, 0.3457, 0.3504, and~b! for p.pc :
p50.3602, 0.3649, 0.3739, 0.3913. The mean positions are also
shown in the insets.
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Here, we use the data for the radial distribution of RCP in
Ref. @21#. The exact procedure to calculateC(r ) from the
data is discussed in Appendix C. In Fig. 8, the resulting
density field using the distribution of RCP is shown. The
field is again a little different from that without FIP, just like
the uniform distribution. Flow induced probability does not
significantly changes the density field. For later comparisons,
we also calculate the mean and the width of the transition
region, as shown in Fig. 9.

The above implementation of flow induced probability
can be included in the framework of the evolution equation.
The effect of FIP is that it modifies the effective trapping
probability of S bonds. For a given distributionC(r ), the
probability that a particle to be trappedP while passing
through a channel is

P5
*0
Rs~r !C~r !dr

*0
`s~r !C~r !dr

, ~14!

wheres(r ) is the mobility of a channel with radiusr . If
uniform conductances(r )5s0 is assumed,P returns to the
familiar value ofp, the fraction ofS bonds. The effective
distribution of C(r ) changes as particles are trapped inS
bonds, making them inaccessible to further incoming par-

ticles. We model this change by removing blockedS bonds
out of the distribution, and transferring them tor.R part of
the distribution. To be more precise, the effective distribu-
tion at givent, C(r ,t), has to satisfy the following condi-
tions:

E
0

R

C~r ,t !dr5p2r~x,t !, ~15!

and

E
R

`

C~r ,t !dr512p1r~x,t !. ~16!

We choose to remove blocked bonds from ther,R part of
the distribution, thusC(r ,t)5@12r(x,t)/p#C(r ). We then
transfer the removed bonds to ther.R part of the distribu-
tion, thusC(r ,t)5@11r(x,t)/(12p)#C(r ). In other words,

C~r ,t !5H @12r~x,t !/p#C~r ! if r<R,

@11r~x,t !/~12p!#C~r ! if r.R.
~17!

Thus the probability to trap a particle passing through a
channel located atx at time t is

P~x,t !5
@12r~x,t !/p#PL

@12r~x,t !/p#PL1@11r~x,t !/~12p!#PR
,

~18!

wherePL5*0
Rs(r )C(r ) and PR5*R

`s(r )C(r ). The effect
of blocking can be added by replacingp with rs(x) in the
above equation. The resulting equation for the evolution is

d

dt
r~x,t !5

1

2W
P~x,t !expF2E

0

x

P~x8,t !dx8G . ~19!

We numerically solve the equation with blocking. In order to
compare the simulations with FIP, we calculate the mean and
the width of the transition region as shown in Fig. 10. Com-
paring the solution with the numerical simulations~Fig. 9!,
one notice good agreements between them, which gives
more confidence in the evolution equation.

FIG. 8. The evolution of the density field with and without FIP
for ~a! p50.3457 and~b! p50.3649. Here,W5100 andL5500,
and the averages are taken over 100 samples. The difference oft
between successive density fields is~a! 3000 and~b! 1000, respec-
tively.

FIG. 9. The mean position~inset! and the width of the transition
region for the density fields of Fig. 8~a!.
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Finally, we study the effect of the relaunching observed in
experiment@8#. There, when a particle passes near a trapped
particle, it occasionally kicks the trapped particle out of its
site. The kicked~or ‘‘relaunched’’! particle can be trapped
again, or it can move along the fluid flow. The actual mecha-
nism for the relaunching, which is probably due to hydrody-
namic interaction, is not completely understood. Here, we
use a simple rule, which tries to imitate the effect. Consider
a particle at a node. If one of the channels right of the node
has a trapped particle, the trapped particle will be kicked out
of the bond with probabilityq. Once the particle is re-
launched, it moves just like any other particle@8#. In Fig. 11,
we show the density field obtained for several values ofp
and relaunching probabilityq. In the simulations, flow in-
duced probability is included, and the distributionC(r ) of
RCP is used. One can see the relaunching changes the den-
sity field a little. The density field does not seem to be sen-
sitive to the details of the rules.

V. CONCLUSION

In this paper, we have studied a simple model for deep
bed filtration. The primary quantity of interest is the density
field of trapped particles. The evolution of the density field is
significantly different depending on whetherp is below or
above a thresholdpc . The density field and its evolution do
not seem to depend on the details of the rules. In order to
have some theoretical understanding of the model, we have
proposed a mean field equation for the evolution. The equa-
tion seems to describe well both qualitative and quantitative
behaviors of the model.

There are several things one should examine before taking
the present model seriously. First of all, one has to check
how sensitively the results depend on the details of the rules.
The rules we have used for particle movements—choosing a
channel, the effect of blocking and the relaunching of
trapped particle—are too simple to be realistic. Thus only
behavior which is not sensitive to the rules can be compared
with experiments. Here, we have studied a few variations of
the rules, and have found the behavior is not sensitive to the
changes, but more extensive study in this direction is desir-

able. The crucial next step to check the relevance of the
model to experiments, however, is to compare with network
models@22#. Network models are believed to be a faithful
representation of real porous media. For example, the
changes in the flow field due to particle movements are taken
into account in these models. If the simple model compares
well with network models, it can be used as a complimentary
tool to study deep bed filtration, and, in particular, the large
scale behaviors of the system.
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APPENDIX A: DETERMINATION
OF THE STEADY STATE

We describe the algorithm we use to find all accessible
S bonds. Consider the square lattice shown in Fig. 1. We
assign variablec(x,y) to node (x,y), and set its value to

FIG. 10. The mean position~inset! and the width of the transi-
tion region from the numerical solution of the evolution equation
~19! are shown.

FIG. 11. The evolution of the density field with relaunching is
shown for several values ofq and for ~a! p50.1 and~b! p50.2.
Here,W5100,L5100, and the field is averaged over 100 samples.
Here, we useC(r ) of RCP, and flow induced probability is in-
cluded.
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0. We start by settingc(x,y)51 at all the nodes onx51
line. We then check the nodes onx51 line. For site (1,j ),
we check the two bonds connected right to the node. If the
bond is anSbond, we mark it asT. If the bond isB bond, we
set c(x,y)51 at the node connected to (1,j ) node through
the bond. Having checked the nodes onx51 line, we pro-
ceed to check the nodes alongx52 line. If c(2,j )51, we
update the bonds and the nodes connected to the (2,j ) node
as described before. We repeat the procedure untilx5L line.
After the update, the bonds marked asT are the bonds which
trap a particle in the steady state.

APPENDIX B: REMOVING THE DEAD ENDS

We describe the algorithm we use to remove all the paths
which leadonly to dead ends. The essential idea is to start
from a dead end, and trace back all the paths leading to it. To
be precise, consider a network as shown in Fig. 1. We start
from the right end of the filter,x5L21 line. We check all
the nodes at the line. For node (L21,y), we check if both of
the bonds to the right the node are blocked. If both of them
are blocked, we block the entrance to the node. In other
words, we block anyB bond left to the node. We do not have
to worry aboutS bonds, since incoming particles will block
them. After checking all the dead ends atx5L21 line, we
go to x5L22 line. We check if both of the bonds to the
right of the node (L22,y) are blocked, and block appropri-

ate B bonds if necessary. We repeat the procedure until
x51 line. After the sweep, all the paths leading only to dead
ends are blocked.

APPENDIX C: CALCULATION OF C„r … OF RCP

We describe the method we use to calculate the channel
radius distributionC(r ) for the three dimensional random
close packing~RCP! of monosize spheres. In essence, we
can calculateC(r ) from the nearest neighbor distribution
N(r ) of RCP, whereN(r )dr is the number of neighbors
whose center lies@r ,r1dr# away from the center of a ref-
erence particle. We use the data forN(r ) in Ref. @21#. We
scan the figure ofN(r ) to obtain a postscript bitmap image
file. Then, we read the coordinates of nonempty pixels from
the file. After simple rescaling,N(r ) can be reconstructed
from the pixel coordinates. FromN(r ), we generate three
lengths r 12, r 23, and r 31. Here, r i j is the center-to-center
distance between spherei and j . We take the channel size as
the radius of the sphere which barely fits in the hole formed
by the three spheres. The present method ignores the corre-
lation between the neighbor distances~e.g., r 12 and r 23).
However, the comparisons of polygons and polyhedrons
generated by the present method with those by actual mea-
surements confirm that the method is an excellent approxi-
mation @21#. The channel radius distribution obtained here
agrees well with the one in Ref.@21#.
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